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ABSTRACT 
We attach a feedback-control-loop infrastructure to an 
existing target system, to continually monitor and 
dynamically adapt its activities and performance. (This 
approach could also be applied to “new” systems, as an 
alternative to “building in” adaptation facilities, but we do 
not address that here.) Our infrastructure consists of 
multiple layers with the objectives of 1. probing, 
measuring and reporting of activity and state during the 
execution of the target system among its components and 
connectors; 2. gauging, analysis and interpretation of the 
reported events; and 3. whenever necessary, feedback 
onto the probes and gauges, to focus them (e.g., drill 
deeper), or onto the running target system, to direct its 
automatic adjustment and reconfiguration. We report on 
our successful experience using this approach in dynamic 
adaptation of a large-scale commercial application that 
requires both coarse and fine grained modifications. 

1. INTRODUCTION 
Our approach to adaptation adds a feedback control loop 
outside and orthogonal to the legacy system’s main 
computation, control and communication. (Note that by 
legacy we mean any pre-existing software, not necessarily 
truly ancient software constructed in, say, COBOL or 
Fortran.) The only direct interaction with the target 
system is to insert (or wrap) probes that detect system 
events and impose (in some target-specific manner) 
effectors that can make adjustments and reconfigurations 
in that system.  System models must also be devised 
based on that target system’s functional and extra-
functional properties, protocols, architecture, domain 
model, etc., in order for higher-level gauges to interpret 
probe emissions and for controllers to decide upon and 
enact system repairs and adaptations.  System models can 
be developed piecemeal and incrementally, with respect 

to selected system views or substructures, so a priori full-
scale analysis is unnecessary. 
Others have also proposed to control the behavior and 
performance of a running application, either as a 
promising generic coordination mechanism [1], or 
attacking specific aspects of dynamic adaptation: dynamic 
service composition and management [21], deployment 
[13], self-modification [8], and “perpetual testing” [16]. 
The major distinctions of our approach are the decoupling 
of the adaptation facilities from the target system and 
further the independence from any underlying support 
framework. These together enable a wide spectrum of 
adaptation, with varying granularity, from the 
configuration of the target architecture as a whole, to the 
pairwise interactions between components, down to the 
tweaking of the inner state of single components. 

Previous papers [22][11][14] introduced our concepts, 
model and system – called Kinesthetics eXtreme (KX, 
pronounced “kicks”) - for applying dynamic adaptation 
facilities “from the outside” of a given target system. In 
this paper, we evaluate the model’s merits and limitations 
based on experience gained by putting it to test on a real-
world, mass-market Internet service.  

2. KX INFRASTRUCTURE  
2.1 Overview 
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Figure 1. Idealized Infrastructure
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Figure 1 shows an idealized view of our infrastructure: 
Initially, data is collected from the running target system.  
It is instrumented with non-invasive probes that report 
raw data to other layers via the Probe Bus. The data is 
then interpreted via a set of gauges that map the probe 
data into various models of the system. The gauges then 
report their findings to the Gauge Bus. Then the Decision 
and Control layer can analyze the implications of the 
interpreted data on overall system performance and make 
decisions on whether to: (1) introduce new gauges in the 
interpretation layer to analyze further, or disable some as 
superfluous; (2) deploy new probes to provide more 
detailed information to the remaining gauges, or turn 
some off to reduce “noise”; and/or (3) reconfigure the 
system itself, perhaps changing the running system’s 
structure by introducing new modules or modifying 
system or component parameters. The system 
reconfiguration would be carried out via 
deployment/activation of software effectors to 
reconfigure, tune or adapt individual components and/or 
major substructures of the system.  
We emphasize that this infrastructure model is largely 
independent of the running system.  However, this is not 
to say that the specific probes, gauges, controllers, 
effectors and models are themselves independent of the 
running system – they are not. The probes and effectors 
must often be specialized to the implementation 
technology; the gauges and decision mechanisms must be 
specialized to the problem domain and environmental 
context.  However, we anticipate that reuse should be 
commonplace, such as for probes and gauges geared 
towards availability, robustness, network QoS, etc. 

2.2 Monitoring 
Probing is a necessary prerequisite for monitoring the 
execution of a running system. We need a minimally 
invasive approach that can be guaranteed to have zero or 
negligible effect on the performance and reliability of the 
system. A probe here is an individual sensor attached to 
or associated with a running program – or a component or 
connector of a running program. A probe can sense some 
portion of the program's, or its environment's, execution 
and make that data available by issuing events. One focus 
of the DARPA DASADA program [10], under which KX 
has been developed to date, has been to agree upon a 
“standard” API for controlling and reading (and adding 
and removing) probes. 
Most of our own work has focused on interoperable 
infrastructure, rather than the probe technology itself.  We 
use a variety of probes developed by outside sources as 
well as ourselves (e.g., the “probelet” in Figure 2, not 
discussed here), and can “drop in” any probe technology 
meeting the DASADA standard API [2].  For example, 
OBJS’ ProbeMeister [16] dynamically inserts probes into 
Java byte code, and Teknowledge’s “instrumented 

connectors” [3] replace Win32 DLLs with pre-
instrumented libraries.   
We have proposed the “Smart Events” XML Schema [8] 
as a standard format for structuring probe output data. 
Our intent is to unify the disparate ways in which the 
varied probe technologies describe observed events. This 
Schema includes extension points for inserting additional 
tag structures appropriate for specific probe and/or gauge 
technologies. We are aware that XML text is verbose, so 
we are investigating efficient “wire formats” for XML-
based event notations – which would allow the wide base 
of XML processing tools to be employed at final 
destinations but incurring relatively little traffic penalty.  
Our implementation also supports the unstructured 
attribute/value pairs handled by today’s content-based 
messaging event buses like U. Colorado’s Siena [5]. 

2.3 Dynamic Analysis 
Gauges are software entities that gather, filter, aggregate, 
compute, and/or analyze measurement information about 
software systems.  In particular, they interpret probe data 
against various models, to produce higher-level outputs: 
gauges can emit events just as can probes can. These 
events are typically at a higher level of abstraction, but 
the aforementioned Smart Events XML Schema has been 
defined to support both levels. As with probes, a major 
concern of the DASADA program has been defining a 
standard gauge API to allow interoperability [20]. 

  
Figure 2. KX Probes and Gauges 

Our own gauges operate within a framework consisting of 
two major components, Event Packager and Event 
Distiller, shown in Figure 2. The Event Packager 
transforms, when necessary, the raw-data format of 
legacy probe output into Smart Events-compatible event 
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streams (using probe- or probe source-specific plugins). It 
also packages and logs these events in an SQL-based 
persistent store for possible replaying. The replay can be 
either “precisely timed” or “fast-forwarded”.   
The Event Distiller recognizes complex temporal event 
patterns from multiple probe sources (conceptually 
similar to Stanford’s Complex Event Processing [15]), 
and constructs higher-level measurements to reflect the 
system state represented by the events. The Event 
Distiller is “programmed” by a collection of 
condition/action rules, where the condition specifies the 
event pattern and the action specifies what to do when 
that pattern is recognized – typically generation of an 
appropriate higher-level event. These events interface 
with the decision layer and, optionally, gauge visualizers. 
Both the probe and gauge buses follow publish/subscribe 
models with content-based routing, so event producers 
and consumers do not need to “know about” each other. 

2.4 Feedback to Reconfiguration 
Gauge outputs are input to a decision process that 
determines what course of action to take, if any.  The 
decision process may be supported by a variety of tools, 
including, e.g., an architecture transformation tool (such 
as CMU’s Tailor [20]) that reacts to gauges that detect 
differences between the running and the nominal 
architecture. Executing high-level repair action(s), e.g., to 
reconfigure the architecture, will often involve several 
activities at the effector (implementation) level. Some of 
these activities may be conditional or dependent on 
others, or may simply fail, so one needs to be able to 
express the adaptation process as a workflow rich enough 
to express contingency plans.  This decision and control 
layer might also invoke the management actions of the 
probe and gauge layers on occasion, for example, to 
induce refined measurements before proceeding with 
adaptation. 
 

Figure 3. KX Feedback Loop Using Workflakes 

We use our Workflakes decentralized workflow system 
[23], as illustrated in Figure 3, to instantiate and 
coordinate all kinds of adaptations of the running system, 
from local actions to more global topological changes. 
Workflakes is built on top of BBN’s Cougaar distributed 
agents architecture [7]. 
We do not yet employ a true workflow notation to 
describe these activities; the workflow is currently 
expressed as a set of coding patterns in Java.  However, 
we are experimenting with U. Massachusetts’ Little-JIL 
workflow formalism [6]. Any chosen process workflow 
specification language must support the description of the 
actions to be applied to repair and adapt a system, 
including at which location(s) the changes should be 
applied. The language needs to specify both sequential 
and parallel execution of actions, and how to deal with 
unsuccessful actions, e.g., by retrying, attempting 
alternate actions, or rolling back changes.   
As with probes, effectors could be realized with various 
technologies. Effector actions range over a spectrum from 
simple adaptations – relatively low-level adjustments to a 
well-defined target system API, e.g., changing a process 
variable or calling a method – to potentially complex 
reconfiguration commands that cause structurally 
significant changes, possibly involving high-level 
adjustments at the system/environmental level. The latter 
may involve, e.g., starting, migrating, restarting, or 
stopping one or more processes, and/or rearranging the 
connections among components.  
Workflakes currently conducts an adaptation workflow 
by selecting, instantiating and dispatching one or more of 
our Worklets mobile agents [21], and coordinating the 
activities of the deployed Worklets on the target system’s 
components and connectors. Worklets carry Java mobile 
code encased in “jackets” that determine conditional 
execution and repetition, timing, etc. Note that effectors 
are the most target-specific aspect of our approach, and 
often must be handcrafted.  
Our current feedback loop is admittedly relatively ad hoc, 
depending on manually constructed gauge rules that 
trigger “canned” workflows - albeit with fairly 
sophisticated instantiation parameters including access to 
a “Worklet factory” - to perform reconfigurations. That 
is, the decision component shown in Figure 3 was 
dispersed between the Event Distiller gauges and the 
Workflakes workflow engine when the results reported 
here were achieved. However, we have recently begun 
experimenting with formalized architectural models as the 
base for adaptation decisions, using CMU’s Acme toolkit 
[4] with repair plans then constructed by Tailor. Such 
architectural models for a given target system could be 
created a priori by hand (as in [7]), or generated based on 
analysis of probed event traffic (as investigated by [17]). 
We can now build gauges that recognize structural 
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changes based on these models. A variety of mechanisms 
could be used in the analysis, including expert systems 
and constraint solvers, as well as hard-coded repair rules. 

3. DYNAMICALLY ADAPTING AN 
INTERNET MASS-MARKET SERVICE 
Our case study concerns a multi-channel instant 
messaging (IM) service for personal communication, 
which operates on a variety of channels, such as the Web, 
PC-based Internet chat, Short Message Service (SMS), 
WAP, etc. The service is currently offered on a 24/7/365 
basis as a value-added service to thousands of users.  

Our goals are twofold: We want to achieve service 
optimization, with respect to the overall QoS perceived by 
the end users, which can be achieved by adapting the 
functional and/or extra-functional characteristics of the 
various service components as well as their interactions. 
The requirements include on-the-fly architectural 
modification for scalability, in response to the detection 
of host- and component-specific load thresholds, as well 
as on-the-fly reconfiguration of the server farm hosting 
the service. We also aim to support dynamic monitoring 
and control of the running service, that is, simplify and 
resolve a number of concerns related to the continuous 
management of such a complex distributed application. 
These requirements include automated deployment of the 
service code; automated bootstrapping and configuration 
of the service; monitoring of database connectivity from 
within the service; monitoring of crashes and shutdowns 
of IM servers; monitoring of client load over time; and 
support for “hot” service staging via automated rollout of 
new versions and patches. 

Our case study is organized as a series of iterations, 
which aim at incrementally fulfilling requirements 
originating from needs discovered in the field by the 
service provisioning organization, and elicited from the 
application development and maintenance team. For each 
iteration, results are first evaluated in the lab; then new 
requirements are accepted for the next iteration, while the 
results produced are delivered and put to test on the field. 
We report here only on the results of the first iteration, 
conducted August – December 2001. (The second 
iteration, February – July 2002, is still in progress.) 

The service runtime environment consists of a typical 
three-tiered server farm: a load balancer provides the 
frontend of the service to all end-users and redirects all 
client traffic to several replicas of the IM components, 
which are installed and operate on a set of middle tier 
hosts. The various replicas of the IM server all share a 
relational database and a common runtime state 
repository, which make up the backend tier, and allow 
replicas to operate in an undifferentiated way as a 
collective service. Some of the IM servers provide 

additional facilities, which handle access to the service 
through specific channels, such as SMS or WAP, and 
interoperate with third-party components and resources 
that remain outside of the scope of the service, e.g., the 
gateways to the cell phone communication network. 
Those extra facilities wrap the core IM functionality in 
various ways.  Given this kind of modularity, it is 
possible to achieve continual validation of all of the 
service components in a server farm in a consistent way, 
by applying probing, gauging and repair in the first place 
on the core IM server components, and extending them as 
needed to validate any critical features of the additional 
wrapping components. 

The current implementation successfully addresses all of 
the first iteration requirements using a specific set of 
probes, gauges and repairs on top of the common 
facilities provided by the KX platform. Workflakes 
addresses the manageability requirements by taking 
responsibility to correctly initiate the service software via 
a completely automatic process, which replaces the 
original manual procedures and later scripts for the 
installation, deployment and bootstrapping of service 
components. This process is enabled by explicitly 
integrating knowledge about the service architecture and 
the runtime environment of the server farm into the logic 
and data loaded at startup onto the Workflakes engine. 
Furthermore, Workflakes addresses QoS requirements, 
responding to scalability needs with a reactive process 
that orchestrates new deployments of IM servers and 
opportune reconfiguration of the load balancer (IBM 
commercial software).  

Figure 4. The IM service architecture 

After startup, Workflakes selects one of the hosts from its 
internal representation of the runtime environment of the 
server farm and sends out a Worklet mobile agent to it. 
This Worklet carries and executes bootstrapping code for 
the IM server and configures it with all the necessary 
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parameters (such as the JDBC connection handle to the 
DBMS, the port numbers for connections by clients and 
other IM servers, etc.). Notice that not only the 
configuration information, but also the executable code of 
the IM server is deployed and loaded on demand from a 
code repository made available to the incoming Worklet. 
This exploits an advantage of a code-pulling feature of 
the Worklets agent platform, which allows one to do 
away with any preliminary installation of the application 
code on all machines taking part in the server farm - 
greatly simplifying the bootstrapping, staging and 
evolution of the service. (An analogous approach is 
followed in U. Colorado’s Software Dock [11].) 

When the Worklet instantiates an IM server, certain 
probes are activated to track its initialization. In the event 
of an unsuccessful initialization, the likely cause is 
inferred by KX on the basis of the probes’ output and 
reported to a dashboard GUI for the human management 
of the service, as well as to the Workflakes process.  
Workflakes may react by deciding to try to bootstrap an 
IM server on the same machine again, or on another one. 
Otherwise upon successful initialization, the process 
dispatches another Worklet onto the load balancer, to 
instruct it to accept traffic for the IM service and pass it to 
the initialized server at the right host address and port. 

Following the initial bootstrapping phase, Workflakes 
takes a reactive role, while the KX platform starts 
monitoring the dynamics of service usage. Certain probes 
and gauges are activated to track user activity, such as 
logging in and out of the initialized server. IM servers 
have an associated load threshold, which in the case of 
this particular service is most simply expressed in terms 
of the number of concurrently active clients in 
relationship with the memory resources of their host. 
When that threshold is passed, the gauges notify 
Workflakes, which reacts by trying to scale up the 
service. It selects an unused machine still available in the 
server farm, and repeats the bootstrapping process 
fragment on that machine, including the update of the 
load balancer configuration. Of course, this scaling-up 
policy can be repeated as many times as the number of 
machines in the server farm allows.  

Notice that the Worklet bootstrapping a new IM server 
must carry an extra piece of configuration: an indication 
of some other alive IM server. This enables the new 
instance to sync up with the IM server pool and its shared 
state, and allows it to function as an undifferentiated 
replica. After a successful initialization of a subsequent 
IM server, client requests begin to arrive at that server via 
the reconfigured load balancer, achieving scalability and 
thus enhancing overall reliability and performance. Other 
conditions that can prompt new deployments and 
bootstrapping of IM servers include failures of some 

existing server replicas, which are inferred by gauges 
from specific sequences of probe events. 

Thus KX together with Workflakes effectively fulfills our 
deployment, bootstrapping and scalability requirements, 
supporting both the service monitoring/control and 
service optimization goals flexibly and dynamically. 
Minor changes to the bootstrapping process sketched 
above enable any service evolution campaign to be 
expressed as a process with tasks that withdraw old server 
instances from the load balancer (thus disallowing new 
traffic to be assigned to them), shut them down when 
traffic is absent or minimal, and conversely start up, 
register on the load balancer, and make available to users 
other server instances with the new code release.  

4. THE BOTTOM LINE 
• The original manual deployment procedure required 

2-3 person-days from scratch on-site, i.e., on the 
premises of a server farm. Using scripts and 
assuming DBMS and web application servers already 
resident, that was reduced this to ½-1 person-day on-
site. With KX, that is reduced to a few minutes from 
a remote location - assuming resident servers like for 
the aforementioned scripts. 

• The scripts consisted of about 500 lines of csh or 
other equivalent Unix shell. Using KX, this is 
reduced to around 220 lines of Java code that runs on 
Win32 platforms as well as Unix. 

• The monitoring and maintenance effort originally 
required 1 sysadmin on-site 24/7/365, monitoring the 
state of the service periodically and taking care of 
trouble tickets as they came, plus 1 technical team on 
call for further support. KX enables continuous 
remote monitoring of major service parameters, with 
automated alarms, and completely automated 
resolution of a set of well-known fault conditions. 

• Considering one such specific condition: KX 
recognizes that load threshold is passed in a matter of 
<1 second, and takes approximately 40 seconds to 
instantiate a new service instance and load-balance it. 
Previously, there was no way to detect an overload 
with direct evidence, and to scale up automatically in 
response. Performance degradation of IM server(s) 
was supposedly kept under control by the sysadmin, 
who would check the number of concurrent users on 
each server - which is periodically logged - and 
would manually start up an additional server before 
such number approached the overload threshold. 
Such manual inspection was potentially error-prone, 
risking that resource starvation (e.g., RAM shortage) 
could remain unnoticed until the server broke down 
and had to be restarted. 
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